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Hazardous chemical emergencies and related poisonings re-
sult from various exposures, including inadvertent residential, industrial, 
occupational, or transportation mishaps; natural disasters; and hazardous-

substance releases that are intended to cause harm.1-3 Up to 100,000 industrial 
chemicals are used each day in the United States,4 and federal authorities estimate 
that more than 10,000 potentially consequential releases of hazardous substances 
occur annually.4,5 In addition, numerous compounds have been developed primarily 
as military weapons, with exceedingly high toxicity.6-8 Both toxic industrial chemicals 
and military chemical weapons are capable of causing mass casualties in a substantive 
release and may be deployed intentionally in the context of chemical terrorism,8-10 
targeted assassination attempts,8,11,12 or wartime attacks on civilian populations, as 
tragically shown in the current Syrian war.13,14

A toxidrome-based, emergency medical systems (EMS) approach to chemical weap-
ons attacks was presented recently by Ciottone in the Journal.8 (Toxidromes are 
constellations of clinical signs, particularly vital signs, mental status, and ocular, 
respiratory, neurologic, and skin findings, that are characteristic of general classes 
of poison.) A similar approach is useful for the myriad possible entities in noninten-
tional hazardous chemical incidents. We review the toxicology and hospital-based 
management of acute poisonings caused principally by dermal and inhalational 
exposure to several representative chemical-agent classes in incidents involving the 
release of hazardous substances or chemical attacks (Table 1). Cyanide and organo-
phosphate poisonings are emphasized, since they can also affect individual patients 
in the more familiar contexts of occupational and residential exposures or ingestions 
with suicidal intent and since specific emergency antidotal therapy is crucial for good 
outcomes.

Ov erv ie w of Hospi ta l -B a sed Emergenc y M a nagemen t

Incidents involving the release of hazardous chemicals may result in widespread 
chaos and confusion, affecting the EMS response and emergency department (ED) 
care.2,8 A rapid influx of multiple critically ill victims with unfamiliar illnesses, as 
well as numerous low-risk but understandably anxious patients, potentially far out-
numbering the seriously ill,1 poses significant challenges to hospital-based emer-
gency care providers. Patients may bypass prehospital care and arrive at the hos-
pital unaware of or misinformed regarding the cause of their symptoms, with the 
potential to chemically contaminate bystanders and staff.2,15-17 Thus, prompt recog-
nition of the chemical event is important so that ED staff and hospital emergency 
management personnel can secure hospital entrances and decontaminate contami-
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nated patients before they enter the ED, assisted 
as needed by providers garbed in appropriate per-
sonal protective equipment.

Consensus guidelines for hospital-based de-
contamination techniques and personal protective 
equipment are available.18-21 Decontamination of 
skin, eyes, and wounds minimizes the risk of 
contact injury, reduces the dose that patients ab-
sorb, and improves their health outcomes, while 
reducing the risk of secondary contamination. 
Briefly, contaminated clothing is immediately re-
moved and safely disposed of, followed by high-
volume, low-pressure flushing of hair and skin 
with tepid water in most cases (exposure to reac-
tive metals is one exception); gentle washing with 
liquid soap, water, and nonabrasive sponges or 
washcloths; and active drying. This approach has 
recently been validated in a simulation study with 
volunteers.22

Ocular decontamination is effected by removal 
of contact lenses (if present) and immediate, copi-
ous irrigation with balanced salt solution, lactated 
Ringer’s solution, saline, or water.23,24 Irrigation 
may be facilitated with the use of local anesthetic 
drops and Morgan lenses (contact lenses con-
nected to tubing, allowing copious irrigation), if 
available, but should not be postponed in order 
to obtain these adjuncts. It is generally recom-
mended that hospital decontamination teams 
don level C personal protective equipment, con-
sisting of a hooded, chemical-resistant body suit 
with a face shield, air-purifying respirator, and 
double layers of chemical-resistant gloves and 
boots18 (Fig. S1 in the Supplementary Appendix, 
available with the full text of this article at 
NEJM.org). Critically ill patients require imme-
diate resuscitation before or concurrently with 
decontamination. Resuscitation, which is per-
formed by emergency personnel wearing personal 
protective equipment, includes airway, breathing, 
and circulatory support (the ABCs), with em-
pirical antidotal therapy provided when indi-
cated. Additional treatment, such as anticonvul-
sant or other medications needed to maintain 
physiological homeostasis, is provided as soon 
as possible.

Chemical disasters pose a considerable risk of 
psychic trauma, and hospital management should 
include early involvement of mental health and 
risk-communication resources.25,26 Victims may 
include children, pregnant women, and the el-

derly, raising additional concerns.27,28 In particu-
lar, several physiological and developmental fac-
tors may increase the susceptibility of young 
children to poisoning and affect management 
(e.g., assistance with decontamination may be 
required, family separation issues need to be ad-
dressed, and antidote choices, formulations, and 
delivery devices must be considered carefully, 
with size-based dosing).9,29,30

An accurate history or laboratory confirma-
tion of substances released may not be immedi-
ately available, forcing providers to make initial 
clinical decisions on the basis of incomplete or 
inaccurate information.2,8 To help focus the ini-
tial evaluation and treatment in such cases, it is 
customary to look for a toxidrome.2,8,31,32 A toxi-
drome nomenclature developed by the U.S. De-
partment of Homeland Security and the National 
Library of Medicine is especially relevant to 
chemical incidents33 (Table S1 in the Supplemen-
tary Appendix). Recognition of the characteristic 
features of opioid, cholinergic, and knockdown 
(asphyxiant) toxidromes may prompt hospital-
based, empirical antidote administration. Routine 
hospital laboratory tests, including measurements 
of blood glucose, electrolytes, and lactate, as well 
as blood gas analysis and hemoglobin speciation, 
can help narrow the differential diagnosis. Just-
in-time clinical guidance is also available from 
consultant medical toxicologists, regional poison 
control centers (telephone number, 800-222-1222), 
and internet-accessible tools such as the National 
Library of Medicine’s Chemical Hazards Emer-
gency Medical Management (CHEMM) website.34 
Ultimately, clinical or environmental laboratory 
results may confirm the responsible chemicals 
and allow for more targeted treatment and post
event communications.

T ox icol o gic Pr inciples

Chemicals exert toxicity primarily by reacting 
with specific target cellular macromolecules or 
creating critical alterations in the cellular micro-
environment, leading to altered cellular function, 
structural injury, or damaged genetic material.35 
Clinical effects depend on several factors, in-
cluding intrinsic toxicity, physical state, expo-
sure route, and dose (with the dose–response 
principle, though oversimplified, stating that the 
amount of absorbed poison generally correlates 

The New England Journal of Medicine 
Downloaded from nejm.org by RICHARD PEARSON on April 27, 2019. For personal use only. No other uses without permission. 

 Copyright © 2019 Massachusetts Medical Society. All rights reserved. 



n engl j med 380;17  nejm.org  April 25, 20191640

T h e  n e w  e ngl a nd  j o u r na l  o f  m e dic i n e

Ta
bl

e 
1.

 R
ep

re
se

nt
at

iv
e 

H
az

ar
do

us
 C

he
m

ic
al

s.
*

A
ge

nt
 C

la
ss

 a
nd

 E
xa

m
pl

es
Li

ke
ly

 C
on

te
xt

s†
Pr

im
ar

y 
To

xi
co

lo
gi

c 
Ef

fe
ct

s
To

xi
dr

om
e

La
bo

ra
to

ry
 F

in
di

ng
s

Tr
ea

tm
en

t 
O

ve
rv

ie
w

Pr
im

ar
y 

re
sp

ir
at

or
y 

ir
ri

ta
nt

s

H
ig

h 
w

at
er

 s
ol

ub
ili

ty

A
m

m
on

ia
, s

ul
fu

r 
di

ox
id

e,
 

hy
dr

og
en

 c
hl

or
id

e
H

az
m

at
, o

cc
up

at
io

na
l, 

re
si

de
nt

ia
l

A
ci

d 
or

 b
as

e 
ge

ne
ra

tio
n,

  
cy

to
to

xi
c 

in
ju

ry
, o

xi
da

nt
 

fo
rm

at
io

n,
 in

fla
m

m
at

or
y 

ca
sc

ad
e

Ir
ri

ta
nt

 o
r 

co
rr

os
iv

e 
 

(r
es

pi
ra

to
ry

: c
en

tr
al

 
lu

ng
)

Po
te

nt
ia

l h
yp

ox
em

ia
R

em
ov

e 
fr

om
 e

xp
os

ur
e;

 p
er

fo
rm

 
A

B
C

s;
 d

ec
on

ta
m

in
at

e 
sk

in
, e

ye
s;

 
su

pp
or

tiv
e 

ca
re

In
te

rm
ed

ia
te

 w
at

er
 s

ol
ub

ili
ty

C
hl

or
in

e
H

az
m

at
, o

cc
up

at
io

na
l, 

re
si

de
nt

ia
l, 

C
W

A
H

C
l g

en
er

at
io

n;
 c

yt
ot

ox
ic

  
in

ju
ry

, o
xi

da
nt

 fo
rm

at
io

n,
 

in
fla

m
m

at
or

y 
ca

sc
ad

e

Ir
ri

ta
nt

 o
r 

co
rr

os
iv

e 
 

(r
es

pi
ra

to
ry

: c
en

tr
al

 
an

d 
pe

ri
ph

er
al

 lu
ng

)

Po
te

nt
ia

l h
yp

ox
em

ia
R

em
ov

e 
fr

om
 e

xp
os

ur
e;

 p
er

fo
rm

 
A

B
C

s;
 d

ec
on

ta
m

in
at

e 
sk

in
, e

ye
s;

 
su

pp
or

tiv
e 

ca
re

Lo
w

 w
at

er
 s

ol
ub

ili
ty

O
xi

de
s 

of
 n

itr
og

en
O

cc
up

at
io

na
l (

si
lo

-  
fil

le
r’

s 
di

se
as

e)
C

yt
ot

ox
ic

 in
ju

ry
, o

xi
da

nt
  

fo
rm

at
io

n,
 in

fla
m

m
at

or
y 

ca
sc

ad
e

Ir
ri

ta
nt

 o
r 

co
rr

os
iv

e 
 

(r
es

pi
ra

to
ry

: p
er

ip
h-

er
al

 lu
ng

)

Po
te

nt
ia

l h
yp

ox
em

ia
Su

pp
or

tiv
e 

ca
re

Ph
os

ge
ne

O
cc

up
at

io
na

l, 
C

W
A

H
C

l g
en

er
at

io
n;

 c
yt

ot
ox

ic
  

in
ju

ry
, o

xi
da

nt
 fo

rm
at

io
n,

 
in

fla
m

m
at

or
y 

ca
sc

ad
e

Ir
ri

ta
nt

 o
r 

co
rr

os
iv

e 
 

(r
es

pi
ra

to
ry

: p
er

ip
h-

er
al

 lu
ng

)

Po
te

nt
ia

l h
yp

ox
em

ia
Su

pp
or

tiv
e 

ca
re

V
es

ic
an

ts

Su
lfu

r 
m

us
ta

rd
C

W
A

, o
cc

up
at

io
na

l
A

lk
yl

at
in

g 
ag

en
t; 

cy
to

to
xi

c 
 

in
ju

ry
 to

 s
ki

n,
 lu

ng
, m

u-
co

us
 m

em
br

an
es

 o
f t

he
 

ey
e,

 n
os

e,
 a

nd
 r

es
pi

ra
to

ry
 

tr
ac

t; 
“r

ad
io

m
im

et
ic

” 
sy

s-
te

m
ic

 to
xi

c 
ef

fe
ct

s

Ir
ri

ta
nt

 o
r c

or
ro

si
ve

 (
oc

u-
la

r,
 s

ki
n,

 lu
ng

 in
ju

ry
; 

sy
st

em
ic

 e
ffe

ct
s,

 s
uc

h 
as

 b
on

e 
m

ar
ro

w
 s

up
-

pr
es

si
on

, w
ith

 s
ev

er
e 

ex
po

su
re

)

Po
te

nt
ia

l h
yp

ox
em

ia
, n

eu
-

tr
op

en
ia

 in
 s

ev
er

e 
ca

se
s

D
ec

on
ta

m
in

at
e 

sk
in

, e
ye

s;
 s

up
po

rt
-

iv
e 

ca
re

; g
ra

nu
lo

cy
te

 c
ol

on
y-

st
im

-
ul

at
in

g 
fa

ct
or

 fo
r 

ne
ut

ro
pe

ni
a 

(t
yp

ic
al

 d
os

e,
 5

 μ
g/

kg
/d

ay
 s

ub
cu

-
ta

ne
ou

sl
y;

 h
em

at
ol

og
y–

on
co

lo
gy

 
co

ns
ul

ta
tio

n 
re

co
m

m
en

de
d)

A
sp

hy
xi

an
ts

Si
m

pl
e

M
et

ha
ne

, p
ro

pa
ne

, n
itr

o-
ge

n,
 h

el
iu

m
, x

en
on

, 
an

d 
ot

he
r n

ob
le

 g
as

es

H
az

m
at

, o
cc

up
at

io
na

l, 
re

si
de

nt
ia

l
D

is
pl

ac
em

en
t o

f o
xy

ge
n

K
no

ck
do

w
n 

(a
sp

hy
xi

an
t)

Lo
w

 a
rt

er
ia

l o
xy

ge
n 

pr
es

-
su

re
 a

nd
 s

at
ur

at
io

n
R

em
ov

e 
fr

om
 e

xp
os

ur
e,

 p
er

fo
rm

 
A

B
C

s,
 p

ro
vi

de
 1

00
%

 o
xy

ge
n

C
ar

bo
n 

di
ox

id
e

O
cc

up
at

io
na

l, 
na

tu
ra

l 
di

sa
st

er
D

is
pl

ac
em

en
t o

f o
xy

ge
n,

 p
lu

s 
di

re
ct

 s
ys

te
m

ic
 e

ffe
ct

s 
(e

.g
., 

C
N

S 
de

pr
es

si
on

,  
hy

pe
rv

en
til

at
io

n)

K
no

ck
do

w
n 

(a
sp

hy
xi

an
t)

Lo
w

 a
rt

er
ia

l o
xy

ge
n 

pr
es

-
su

re
 a

nd
 s

at
ur

at
io

n,
 

w
ith

 o
r 

w
ith

ou
t h

yp
er

-
ca

rb
ia

R
em

ov
e 

fr
om

 e
xp

os
ur

e,
 p

er
fo

rm
 

A
B

C
s,

 p
ro

vi
de

 1
00

%
 o

xy
ge

n

Sy
st

em
ic

The New England Journal of Medicine 
Downloaded from nejm.org by RICHARD PEARSON on April 27, 2019. For personal use only. No other uses without permission. 

 Copyright © 2019 Massachusetts Medical Society. All rights reserved. 



n engl j med 380;17  nejm.org  April 25, 2019 1641

Hazardous Chemical Emergencies and Poisonings

M
et

he
m

og
lo

bi
n 

in
du

ce
rs

 
(e

.g
., 

ni
tr

ite
s 

an
d 

ni
-

tr
at

es
, p

ro
du

ct
s 

of
 

co
m

bu
st

io
n,

 m
ul

tip
le

 
m

ed
ic

at
io

ns
)

H
az

m
at

, o
cc

up
at

io
na

l, 
sm

ok
e 

fr
om

 h
ou

se
 

fir
e,

 s
el

f- 
in

fli
ct

ed
, a

dv
er

se
 

dr
ug

 r
ea

ct
io

n

M
et

he
m

og
lo

bi
n 

in
du

ct
io

n,
 

re
su

lta
nt

 in
te

rf
er

en
ce

 
w

ith
 h

em
og

lo
bi

n 
ox

yg
en

 
bi

nd
in

g,
 le

ft
w

ar
d 

sh
ift

 o
f 

ox
yh

em
og

lo
bi

n 
di

ss
oc

ia
-

tio
n 

cu
rv

e

K
no

ck
do

w
n 

(a
sp

hy
xi

-
an

t)
; c

ya
no

si
s 

un
re

-
sp

on
si

ve
 to

 o
xy

ge
n 

ad
m

in
is

tr
at

io
n

N
or

m
al

 a
rt

er
ia

l o
xy

ge
n 

pr
es

-
su

re
 a

nd
 s

at
ur

at
io

n 
(c

al
-

cu
la

te
d)

, w
ith

 o
r w

ith
ou

t 
m

et
ab

ol
ic

 a
ci

do
si

s,
 h

y-
pe

rla
ct

at
em

ia
; e

le
va

te
d 

m
et

he
m

og
lo

bi
n

R
em

ov
e 

fr
om

 e
xp

os
ur

e,
 p

er
fo

rm
 

A
B

C
s,

 p
ro

vi
de

 1
00

%
 o

xy
ge

n;
  

an
tid

ot
e:

 m
et

hy
le

ne
 b

lu
e 

 
(1

–2
 m

g/
kg

 IV
, g

iv
en

 s
lo

w
ly

  
ov

er
 a

 p
er

io
d 

of
 5

 m
in

; m
ay

 r
e-

pe
at

 in
 3

0–
60

 m
in

 a
s 

ne
ed

ed
)

C
ar

bo
n 

m
on

ox
id

e
H

az
m

at
, o

cc
up

at
io

na
l, 

sm
ok

e 
fr

om
 h

ou
se

 
fir

e,
 r

es
id

en
tia

l, 
se

lf-
 

in
fli

ct
ed

C
ar

bo
xy

he
m

og
lo

bi
n 

pr
od

uc
-

tio
n,

 r
es

ul
ta

nt
 in

te
rf

er
-

en
ce

 w
ith

 h
em

og
lo

bi
n 

bi
nd

in
g,

 le
ft

w
ar

d 
sh

ift
 o

f 
ox

yh
em

og
lo

bi
n 

di
ss

oc
ia

-
tio

n 
cu

rv
e,

 m
ito

ch
on

dr
ia

l 
cy

to
ch

ro
m

e 
ox

id
as

e 
in

hi
-

bi
tio

n

K
no

ck
do

w
n 

(a
sp

hy
xi

an
t)

N
or

m
al

 a
rt

er
ia

l o
xy

ge
n 

pr
es

su
re

 a
nd

 s
at

ur
at

io
n 

(c
al

cu
la

te
d)

, w
ith

 o
r 

w
ith

ou
t m

et
ab

ol
ic

 a
ci

-
do

si
s,

 h
yp

er
la

ct
at

em
ia

; 
el

ev
at

ed
 c

ar
bo

xy
he

m
o-

gl
ob

in

R
em

ov
e 

fr
om

 e
xp

os
ur

e,
 p

er
fo

rm
 

A
B

C
s,

 p
ro

vi
de

 1
00

%
 o

xy
ge

n;
  

co
ns

id
er

 H
B

O
‡

C
ya

ni
de

H
az

m
at

, o
cc

up
at

io
na

l, 
sm

ok
e 

fr
om

 h
ou

se
 

fir
e,

 s
el

f-i
nf

lic
te

d,
 

ad
ve

rs
e 

dr
ug

 r
ea

c-
tio

n,
 C

W
A

M
ito

ch
on

dr
ia

l c
yt

oc
hr

om
e 

ox
id

as
e 

in
hi

bi
tio

n
K

no
ck

do
w

n 
(a

sp
hy

xi
an

t)
 

pl
us

 ir
ri

ta
nt

N
or

m
al

 a
rt

er
ia

l o
xy

ge
n 

pr
es

su
re

 a
nd

 s
at

ur
at

io
n 

(m
ild

 c
as

es
);

 e
le

va
te

d 
ve

no
us

 o
xy

ge
n 

sa
tu

ra
-

tio
n;

 m
et

ab
ol

ic
 a

ci
do

si
s,

 
hy

pe
rl

ac
ta

te
m

ia
; e

le
va

t-
ed

 b
lo

od
 c

ya
ni

de
 le

ve
l§

R
em

ov
e 

fr
om

 e
xp

os
ur

e,
 p

er
fo

rm
 

A
B

C
s,

 p
ro

vi
de

 1
00

%
 o

xy
ge

n;
 c

or
-

re
ct

 a
ci

do
si

s;
 c

on
si

de
r 

G
I d

ec
on

-
ta

m
in

at
io

n 
fo

r 
in

ge
st

ed
 c

ya
no

-
ge

ni
c 

co
m

po
un

ds
; c

on
si

de
r 

H
B

O
; a

nt
id

ot
es

: h
yd

ro
xo

co
ba

la
-

m
in

, s
od

iu
m

 n
itr

ite
, s

od
iu

m
 th

io
-

su
lfa

te
‡

H
yd

ro
ge

n 
su

lfi
de

O
cc

up
at

io
na

l, 
na

tu
ra

l 
di

sa
st

er
, s

el
f-

in
fli

ct
ed

, C
W

A

M
ito

ch
on

dr
ia

l c
yt

oc
hr

om
e 

ox
id

as
e 

in
hi

bi
tio

n
K

no
ck

do
w

n 
(a

sp
hy

xi
an

t)
 

pl
us

 ir
ri

ta
nt

N
or

m
al

 a
rt

er
ia

l o
xy

ge
n 

pr
es

su
re

 a
nd

 s
at

ur
at

io
n 

(m
ild

 c
as

es
);

 e
le

va
te

d 
ve

no
us

 o
xy

ge
n 

sa
tu

ra
-

tio
n;

 m
et

ab
ol

ic
 a

ci
do

si
s,

 
hy

pe
rl

ac
ta

te
m

ia

R
em

ov
e 

fr
om

 e
xp

os
ur

e 
(P

PE
 fo

r 
re

s-
cu

er
s)

, p
er

fo
rm

 A
B

C
s,

 p
ro

vi
de

 
10

0%
 o

xy
ge

n,
 c

or
re

ct
 a

ci
do

si
s;

 
co

ns
id

er
 H

B
O

; a
nt

id
ot

es
: s

od
i-

um
 n

itr
ite

, h
yd

ro
xo

co
ba

la
m

in
 

(s
am

e 
do

si
ng

 a
s 

fo
r 

cy
an

id
e)

‡

C
ho

lin
er

gi
c 

ag
en

ts

O
rg

an
op

ho
sp

ha
te

 a
nd

 c
ar

-
ba

m
at

e 
in

se
ct

ic
id

es
H

az
m

at
, o

cc
up

at
io

na
l, 

re
si

de
nt

ia
l, 

se
lf-

in
-

fli
ct

ed

C
ho

lin
es

te
ra

se
 in

hi
bi

tio
n 

 
at

 n
eu

ra
l s

yn
ap

se
s

C
ho

lin
er

gi
c 

(m
us

ca
ri

ni
c,

 
ni

co
tin

ic
, C

N
S)

Lo
w

 r
ed

-c
el

l c
ho

lin
es

te
ra

se
 

an
d 

se
ru

m
 c

ho
lin

es
te

r-
as

e 
le

ve
ls

§

R
em

ov
e 

fr
om

 e
xp

os
ur

e;
 d

ec
on

ta
m

i-
na

te
 s

ki
n,

 e
ye

s 
(P

PE
 fo

r 
pr

ov
id

-
er

s)
; c

on
si

de
r 

G
I d

ec
on

ta
m

in
a-

tio
n,

 a
s 

ne
ed

ed
; a

nt
id

ot
es

: a
tr

o-
pi

ne
, p

ra
lid

ox
im

e

M
ili

ta
ry

 n
er

ve
 a

ge
nt

s
C

W
A

C
ho

lin
es

te
ra

se
 in

hi
bi

tio
n 

 
at

 n
eu

ra
l s

yn
ap

se
s

C
ho

lin
er

gi
c 

(m
us

ca
ri

ni
c,

 
ni

co
tin

ic
, C

N
S)

Lo
w

 r
ed

-c
el

l c
ho

lin
es

te
ra

se
 

an
d 

se
ru

m
 c

ho
lin

es
te

r-
as

e 
le

ve
ls

§

R
em

ov
e 

fr
om

 e
xp

os
ur

e;
 d

ec
on

ta
m

i-
na

te
 s

ki
n,

 e
ye

s 
(P

PE
 fo

r 
pr

ov
id

-
er

s)
; a

nt
id

ot
es

: a
tr

op
in

e,
 p

ra
li-

do
xi

m
e,

 d
ia

ze
pa

m

*	�
A

B
C

s 
de

no
te

s 
ai

rw
ay

, b
re

at
hi

ng
, a

nd
 c

ir
cu

la
to

ry
 s

up
po

rt
, A

R
D

S 
ac

ut
e 

re
sp

ir
at

or
y 

di
se

as
e 

sy
nd

ro
m

e,
 C

N
S 

ce
nt

ra
l n

er
vo

us
 s

ys
te

m
, C

W
A

 c
he

m
ic

al
 w

ea
po

n 
at

ta
ck

, G
I 

ga
st

ro
in

te
st

in
al

, 
ha

zm
at

 h
az

ar
do

us
 m

at
er

ia
l, 

H
B

O
 h

yp
er

ba
ri

c 
ox

yg
en

 t
he

ra
py

, H
C

l h
yd

ro
ch

lo
ri

c 
ac

id
, I

V
 in

tr
av

en
ou

s,
 a

nd
 P

PE
 p

er
so

na
l p

ro
te

ct
iv

e 
eq

ui
pm

en
t.

†
	�“

R
es

id
en

tia
l”

 r
ef

er
s 

to
 a

 r
es

id
en

tia
l, 

ve
hi

cu
la

r,
 o

r 
si

m
ila

r 
is

ol
at

ed
 e

ve
nt

. E
xa

m
pl

es
 o

f a
 n

at
ur

al
 d

is
as

te
r 

ar
e 

a 
vo

lc
an

o 
er

up
tio

n 
an

d 
a 

ga
s-

em
itt

in
g 

la
ke

.
‡

	�H
B

O
 fo

r 
ca

rb
on

 m
on

ox
id

e 
po

is
on

in
g 

is
 c

on
tr

ov
er

si
al

 b
ut

 m
ay

 m
iti

ga
te

 n
eu

ro
co

gn
iti

ve
 s

eq
ue

la
e 

an
d 

m
ay

 b
e 

co
ns

id
er

ed
 if

 r
ea

di
ly

 a
va

ila
bl

e,
 p

ar
tic

ul
ar

ly
 fo

r 
pa

tie
nt

s 
w

ith
 lo

ss
 o

f c
on

-
sc

io
us

ne
ss

, i
sc

he
m

ic
 c

ar
di

ac
 c

ha
ng

es
, n

eu
ro

lo
gi

c 
de

fic
its

, a
nd

 c
lin

ic
al

ly
 s

ig
ni

fic
an

t 
m

et
ab

ol
ic

 a
ci

do
si

s.
 H

B
O

 fo
r 

cy
an

id
e 

an
d 

hy
dr

og
en

 s
ul

fid
e 

ha
s 

be
en

 r
ep

or
te

d,
 b

ut
 it

s 
ef

fic
ac

y 
is

 
un

pr
ov

en
, a

nd
 it

 is
 n

ot
 t

yp
ic

al
ly

 r
ec

om
m

en
de

d.
§	�

B
lo

od
 c

ya
ni

de
, r

ed
-c

el
l c

ho
lin

es
te

ra
se

, a
nd

 s
er

um
 c

ho
lin

es
te

ra
se

 t
es

ts
 a

re
 n

ot
 a

va
ila

bl
e 

on
 a

n 
em

er
ge

nc
y 

ba
si

s 
in

 m
os

t 
ho

sp
ita

ls
.

The New England Journal of Medicine 
Downloaded from nejm.org by RICHARD PEARSON on April 27, 2019. For personal use only. No other uses without permission. 

 Copyright © 2019 Massachusetts Medical Society. All rights reserved. 



n engl j med 380;17  nejm.org  April 25, 20191642

T h e  n e w  e ngl a nd  j o u r na l  o f  m e dic i n e

with severity), as well as factors affecting host 
susceptibility (e.g., genetic factors, age, and co-
existing conditions).36 For dermal or inhalational 
exposures, the systemically absorbed dose varies 
with the concentration of the agent and the du-
ration of exposure (contact time). Intrinsic toxic-
ity is often expressed as the median lethal dose 
(LD50, the dose that will cause death in 50% of 
persons) and is measured in milligrams per kilo-
gram of body weight. For gases, the estimated 
median lethal dose (LCt50) reflects both the con-
centration inhaled and the duration (t) of exposure 
and is typically expressed in milligrams × minutes 
per cubic meter inhaled.

Cl a sses of H a z a r d ous 
Subs ta nces

Primary Respiratory Irritants

Numerous agents that cause respiratory tract and 
pulmonary injury after inhalation exposure are 
among the most common substances involved in 
industrial incidents.1,3 These primary respiratory 
irritants injure mucous membranes by various 
mechanisms, including liberation of acids (chlo-
rine, phosgene, sulfur dioxide, and nitrogen ox-
ides) and alkali (ammonia), oxidant formation, 
and inflammatory-cascade initiation.37 Exposure 
to respiratory irritants leads to characteristic 
toxidromes that are based on the agent’s water 
solubility.37,38 Highly water-soluble chemicals 
(e.g., ammonia) cause immediate irritant symp-
toms (burning sensation, tearing, sneezing, 
rhinorrhea, and cough) from exposed mucous 
membranes. These immediate effects generally 
provide effective warning, limiting exposure. How-
ever, massive exposure or inability to f lee may 
further involve the lower airway and gas-exchange 
surfaces. Severely affected patients present with 
airway obstruction, dyspnea, wheezing, and pro-
gressive acute lung injury. In 1984, the extraor-
dinary industrial release of methyl isocyanate in 
Bhopal, India, exposed more than 200,000 people, 
causing an estimated 6000 deaths within 1 week.39 
Smaller-scale incidents involving other agents, 
such as moderately water-soluble chlorine, have 
occurred from railroad transport events,40 the 
common household mixing of bleach and clean-
ing compounds, or exposure to chemicals used 
in swimming pools.41,42 Chlorine was deployed 
as a weapon in World War I and has been used 
against civilians, with devastating consequences, 

in the current Syrian civil war.13 Standard treat-
ment of exposures to such water-soluble agents is 
supportive, including removal from exposure, 
decontamination, and provision of humidified 
oxygen and nebulized bronchodilators as indi-
cated37,38 (Table 2). Potentially salutary, but less 
established, interventions include inhaled or sys-
temic glucocorticoids and nebulized sodium bi-
carbonate for chlorine inhalation.37,42

In contrast to water-soluble compounds, rela-
tively water-insoluble respiratory irritants cause 
few symptoms or upper-airway signs before de-
layed-onset acute lung injury is manifested. In-
citing agents include oxides of nitrogen (causing 
silo filler’s disease) and phosgene.37,38,43,44 Patients 
may be unaware of exposure, presenting hours 
to days later with increased sputum production, 
chest tightness, and dyspnea on exertion. Clinical 
findings include dyspnea, tachypnea, wheezes, 
and rales; pulse oximetry or blood gas analysis 
may show decreased oxygen saturation with ac-
tivity. Imaging studies may suggest interstitial or 
central pulmonary edema. Treatment begins with 
prompt recognition and termination of exposure. 
Most experts recommend early administration 
of glucocorticoids, although the benefit of this 
treatment has not been proved. Additional thera-
pies of potential benefit include inhaled beta-
agonists and N-acetylcysteine, as well as ibupro-
fen.37,38,43-45 After phosgene exposure, bed rest and 
close observation are recommended, with oxygen 
supplementation delayed until it is clinically re-
quired to prevent hypoxemia. If oxygen therapy 
is necessary, it should target oxygen saturation 
at the low end of the normal range in order to 
mitigate oxidant-induced injury.43,44 Delayed or 
persistent effects of respiratory irritants include 
airway hyperreactivity, or reactive airways dys-
function syndrome, characterized by acute bron-
choconstrictor responses to otherwise innocu-
ous concentrations of inhaled agents,46,47 as well 
as interstitial pulmonary fibrosis, emphysema, 
bronchiectasis, and bronchiolitis obliterans.37,39,45

Vesicants

Vesicants, or blistering agents, are a distinct class 
of chemical warfare agents that were first used in 
World War I.48 Initial identification through toxi-
drome recognition is challenging because the 
initial skin, eye, and respiratory symptoms from 
vesicants are similar to the symptoms caused by 
other irritant corrosive chemicals. However, ves-
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Medication Adult Dose Pediatric Dose Comments†

Prehospital (moderate-to-
severe toxic injury)

Albuterol MDI, 90 μg/actua-
tion (use of spacer 
preferable)

4–8 actuations Body weight, 5–10 kg: 4 actuations
11–20 kg: 6 actuations
>20 kg: 8 actuations

Add mask for young children

Repeat same dose every 20 min up to 3 times as 
needed for acute bronchospasm; active airway 
management required for worsening gas  
exchange or evidence of upper-airway obstruction

Hospital (moderate-to-severe 
toxic injury)

Albuterol Add mask for young children Repeat same dose every 20 min up to 3 times as 
needed for acute bronchospasm; active airway 
management required for worsening gas  
exchange or evidence of upper-airway obstruction

Intermittent nebulization 2.5–5 mg 5–10 kg: 2.5 mg
11–20 kg: 3.75 mg

>20 kg: 5 mg

MDI, 90 μg/actuation (use 
of spacer preferable)

4–8 actuations 5–10 kg: 4 actuations
11–20 kg: 6 actuations
>20 kg: 8 actuations

Continuous nebulization 7.5–15 mg/hr 5–10 kg: 7.5 mg/hr
11–20 kg: 11.25 mg/hr

>20 kg: 15 mg/hr

Nebulized sodium bicarbon-
ate, 3–4%‡

4 ml adminis-
tered over a  

20-min period

4 ml administered over a 20-min  
period

Repeat dose as needed if improvement noted; con-
sider addition of nebulized sodium bicarbonate 
in selected cases (e.g., 1:1 dilution of 5 to 8.4% 
sodium bicarbonate stock solution with sterile  
saline provides approximately 3–4% sodium bi-
carbonate solution for inhalation)

Glucocorticoids Consider glucocorticoids in addition to inhaled  
beta-agonist

Prednisone 40–80 mg  
orally

1–2 mg/kg, orally (maximum, 60 mg)

Methylprednisolone 40–80 mg IV 1–2 mg/kg, IV (maximum, 60 mg)

*	�In general, we recommend that initial supportive care and medications for bronchospasm due to acute chemical inhalational injury parallel 
that for acute exacerbations of asthma. The suggested medication regimens are adapted from our institutional preferences (e.g., Children’s 
Hospital of Philadelphia’s ED Pathway for Evaluation/Treatment of Children with Asthma [www​.chop​.edu/​clinical​-pathway/​asthma​-emergent​- 
care​-clinical​-pathway]) and literature review (e.g., the National Institute of Health’s Guidelines for the Diagnosis and Management of 
Asthma [www​.nhlbi​.nih​.gov/​files/​docs/​guidelines/​asthgdln​.pdf]). Prehospital and hospital care for mass casualties (e.g., in cases of injury 
from a hazmat exposure, an industrial terrorist incident, or a CWA) or care for individual patients (e.g., in cases of injury from home-based 
mixing of chemicals such as acid or ammonia and bleach, incidents related to swimming pool chemicals, small-scale industrial release of 
respiratory irritants, or occupational exposure to vesicants in discarded munitions) focuses on adequate oxygenation and decontamination. 
The recommended initial therapy is high-flow oxygen for dyspnea or low oxygen saturation; high-flow, low-pressure ocular irrigation with 
physiologic saline or water; beta-agonist metered-dose inhaler (MDI) or nebulized beta-agonists (e.g., albuterol) for wheezing or cough, 
with spacing device; early disrobing and water-based skin decontamination for liquid exposures, with particular attention to intertriginous 
areas for mustard exposure. Suspected exposure to phosgene is an exception to high-flow oxygen; in such cases, oxygen supplementation 
should be delayed until clinically necessary in order to avoid hypoxemia. Then oxygen supplementation should be used to target oxygen sat-
uration at the low end of the normal range, since the pulmonary injury is primarily related to covalent binding by reactive oxygen to cellular 
macromolecules (nucleophilic attack), with loss of surfactant and alveolar injury. Measures that anticipate increasing dead space, hemocon-
centration with incipient pulmonary edema, and application of positive-end respiratory pressure and oxygen supplementation, as required, 
take precedence over sympathomimetic and antiinflammatory medications.

†	�Consultation with a regional poison control center, medical toxicologist, or pulmonologist or intensivist is recommended for patients with 
persistent or worsening symptoms. Additional treatment approaches that might be considered for toxic inhalant–induced bronchospasm or 
acute lung injury include protective lung-ventilation strategies, inhaled glucocorticoids, antioxidants such as N-acetylcysteine, and antiin-
flammatory agents such as ibuprofen.

‡	�For exposure to respiratory irritants based on the generation of hydrochloric acid (e.g., chloramine and chlorine), nebulized sodium bicar-
bonate may be considered if wheezing or cough persists after the patient has been removed from the source of exposure and one or two ad-
ministrations of inhaled beta-agonists have been administered. If nebulized sodium bicarbonate is used, it should be administered sepa-
rately from nebulized beta-agonists.

Table 2. Emergency Care Guidelines for Toxic Inhalant Injury.*
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icant exposure may progress to more clinically 
significant injuries, with serious systemic effects. 
Although vesicants include nitrogen mustard, 
lewisite, and phosgene oxime, sulfur mustard 
is the greatest concern with respect to military 
and terrorist use. Casualties have been reported 
from the use of sulfur mustard in the 1980s 
Iran–Iraq conflict and attacks against civilians 
in the current Syrian conflict and have also been 
reported among fishermen exposed to munitions 
that were disposed of at sea and resurfaced in 
fishing dredges.13,49,50

Liquid mustard persists in the environment at 
room temperature and is primarily a dermal haz-
ard.48 Vapors, formed at higher ambient tempera-
tures, or aerosolized liquids, are an inhalation 
hazard. Mustard is an alkylating agent, attacking 
cellular macromolecules and DNA and irrevers-
ibly damaging target tissues on contact, particu-
larly skin, lung, and eye tissues. There is rapid 
formation of a highly reactive sulfonium ion, 
which forms cross-links with guanine in DNA, 
arresting the cell cycle, initiating apoptosis, gen-
erating oxidative stress, depleting glutathione and 
other antioxidants, and increasing inflammatory 
mediators.51,52 Mustard injures basal keratinocytes 
in the epidermis, degrades adhesive proteins, and 
initiates intense inflammation, causing dermal–
epidermal separation.52,53 Skin injury is manifested 
2 to 24 hours after exposure, initially as erythema 
and burning pain, with subsequent formation of 
vesicles, which coalesce into large bullae (Fig. S2 in 
the Supplementary Appendix).48,49 Vapors penetrate 
clothes and concentrate in moist areas, which 
explains the high number of inguinal and axil-
lary burns observed in battlefield casualties.7 
Mustard penetration of the dermis provides a 
route for systemic absorption and distant organ 
injury (e.g., lung and bone marrow injury).48

The lungs sustain cytotoxic injury and oxida-
tive stress from inhaled mustard vapors or aero-

sol droplets or from systemically absorbed ad-
ducts after skin exposure.48,54,55 Respiratory mucosal 
sloughing, casts and fibrin pseudomembrane 
formation in the airways, lung inflammation, 
and activation of the coagulation pathway may 
result in the acute respiratory distress syndrome, 
with high mortality. Symptoms include a delayed 
onset of burning pain in the nose and throat, 
nosebleeds, hoarse voice, productive cough, and 
dyspnea. Most deaths from mustard exposure are 
due to respiratory failure.48 Chronic lung effects 
include bronchitis and bronchiolitis obliterans.

The eyes are most sensitive to mustard expo-
sure, with red, irritated conjunctiva progressing 
to blepharospasm and lid edema, corneal ulcer-
ations, and in extreme cases, corneal rupture.48,56 
The systemic toxic effects of mustard exposure 
are similar to those of chemotherapeutic agents: 
bone marrow suppression, neutropenia, and 
subsequent sepsis, mutagenesis, and carcino-
genesis.48,55

The delayed onset of symptoms complicates 
triage, treatment, and disposition of potentially 
exposed patients. Management is mostly limited 
to rapid skin and ocular decontamination to 
limit the dose and prevent the spread of con-
tamination, as well as to the provision of sup-
portive respiratory, ophthalmic, and burn care7,48 
(Table 1). Hospital-based decontamination con-
sists of immediate removal and safe disposal of 
clothing, the use of copious soap and water to 
wash skin and hair, and copious eye irrigation. 
Skin bullae contain no active mustard and may 
be débrided as indicated. Early instillation of 
combined antibiotic and glucocorticoid ophthal-
mic agents, with ophthalmologic consultation 
even for mild ocular injury, is recommended48,56; 
keratopathy attributable to impaired cellular re-
generation can occur decades after a severe ex-
posure. Management of systemic effects includes 
vigilant surveillance for and early treatment of 
infections and the use of granulocyte colony-
stimulating factor for neutropenia (Table  1). 
Effective early treatments to prevent or lessen 
mustard injuries have been elusive, but new mech-
anism-based therapies are now showing prom-
ise. Recent studies suggest that antioxidants 
(e.g., N-acetylcysteine), anticoagulants (e.g., tis-
sue plasminogen activator), and antiinflamma-
tory therapies (e.g., dexamethasone), especially 
in combination, may be promising interven-

Figure 1 (facing page). Cyanide Poisoning.

Panel A shows the mechanism of cyanide poisoning at 
the level of the mitochondria, and Panel B shows the 
spectrum of clinical findings and a patient with mod-
erate cyanide poisoning. ADP denotes adenosine di-
phosphate, CoQ coenzyme Q, e− electron, FAD and 
FADH2 oxidized and reduced flavin adenine dinucleo-
tide, respectively, and Pi inorganic phosphate.
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tions.51,52,54 Large numbers of mustard-exposed 
patients would place a tremendous burden on the 
health care system, requiring extensive ophthal-
mologic, burn unit, and critical care resources.

Asphyxiant Agents

Asphyxiant exposures cause tissue hypoxia, with 
profound neurologic and cardiovascular effects.57,58 
Simple asphyxiants (e.g., nitrogen and methane) 
act primarily through physical displacement of 
oxygen from inspired air, resulting in arterial 
hypoxemia. Some systemic or chemical asphyxi-
ants (e.g., carbon monoxide and methemoglobin 
inducers) interfere with oxygen transport, and 
some (e.g., carbon monoxide, hydrogen sulfide, 
cyanide, phosphine, and azides) interfere with 
oxidative metabolism, leading to tissue hypoxia 
with a shift to anaerobic metabolism and result-

ing in metabolic acidosis and hyperlactatemia. 
Arterial oxygenation, as indicated by the partial 
pressure of arterial oxygen, may be preserved 
before respiratory depression and cardiovascular 
collapse ensue. Inadvertent environmental and 
occupational exposures to asphyxiants are nu-
merous. Intentional poisonings also occur, in-
cluding suicidal inhalation of carbon monoxide 
and hydrogen sulfide59,60 and ingestion of azide 
or cyanide salts.61,62 Some asphyxiants are con-
sidered to be potential terrorist threats.57 In the 
most severe exposures, particularly with carbon 
monoxide, cyanide, and hydrogen sulfide, rapid 
knockdown may occur, with a sudden loss of 
consciousness, collapse, and progressive cardio-
vascular compromise. The asphyxiant (knock-
down) toxidrome ranges from severe effects, such 
as seizures, coma, hypotension, bradycardia, and 

Indication Supportive Laboratory Findings Medication
Adult 
Dose

Pediatric 
Dose Comment

Smoke inhalation from house 
fire, with prehospital cardio-
respiratory arrest or coma, 
hypotension

High-anion-gap metabolic  
acidosis, lactate level  
>10 mmol/liter (elevated 
carboxyhemoglobin level 
alone not typically associ-
ated with lactate level  
>10 mmol/liter)

Hydroxocobalamin* 
(sodium thiosul-
fate [25%]† if hy-
droxocobalamin 
not available)

5 g 70 mg/kg; 
maximum, 

5 g

IV infusion over a 15-min 
period; repeat the 
same dose as needed 
in severe cases

Injury from occupational or 
hazmat exposure, nitroprus-
side, self-harm, or CWA; or 
suggestive toxidrome and 
severely ill patient

High-anion-gap metabolic  
acidosis, lactate level  
>8 mmol/liter; narrow  
arteriovenous oxygen  
saturation gap

Hydroxocobalamin* 
(sodium thiosul-
fate [25%]† plus 
sodium nitrite 
[3%]‡ if hydroxo-
cobalamin not 
available)

5 g 70 mg/kg; 
maximum, 

5 g

IV infusion over a 15-min 
period; repeat the 
same dose as needed 
in severe cases

*	�Hydroxocobalamin is the preferred cyanide antidote in all circumstances. Some practitioners recommend hydroxocobalamin followed by 
thiosulfate (administered through a separate or well-flushed catheter to avoid particulate formation) for severe cases, especially if evidence 
of toxic effects persists after the maximum dose of hydroxocobalamin has been administered, but the superiority of this combination over 
hydroxocobalamin alone has not been proved. If hydroxocobalamin is not available, sodium nitrite plus sodium thiosulfate may be substi-
tuted, except if clinically significant carbon monoxide toxic injury is also suspected, in which case thiosulfate alone is preferred. Immediate 
treatment with one of the indicated regimens is recommended for critically ill patients with suspected cyanide intoxication. We also recom-
mend consultation with a medical toxicology service or poison control center for more specific guidance. Additional antidotes available out-
side the United States include dicobalt edetate and dimethylaminophenol.

†	�In patients with clinically significant concomitant carbon monoxide toxic effects, thiosulfate given alone will have some antidotal benefit if 
hydroxocobalamin is not available. Nitrites are contraindicated in such patients. For all indications, thiosulfate (25%) is administered at a 
dose of 12.5 g (50 ml) in adults and 412 mg per kilogram (maximum, 12.5 g) (1.65 ml per kilogram; maximum, 50 ml) in children, by IV in-
fusion over a 30-minute period; repeat a half dose after 30 minutes as needed.

‡	�Nitrites should generally be avoided in pregnant women, but if hydroxocobalamin is not available, the severity of the case must be consid-
ered. Amyl nitrite inhalation was previously recommended to precede sodium nitrite infusion in the prehospital setting and was included as 
part of the cyanide antidote kit, but this kit is no longer available. Sodium nitrite (3%) is administered at a dose of 300 mg (10 ml) in adults 
and 5.8 to 11.6 mg per kilogram (maximum, 300 mg) (0.19–0.39 ml per kilogram; maximum, 10 ml) in children, by IV infusion over a 
5-minute period; repeat a half dose after 30 minutes as needed. Nitrite dose adjustments are recommended for children on the basis of ex-
pected or measured hemoglobin levels. For an estimated hemoglobin level of 12 g per deciliter, sodium nitrite (3%) at a dose of 10 mg per 
kilogram (maximum, 300 mg) (0.33 ml per kilogram; maximum, 10 ml) is recommended. Consultation with a toxicology service or poison 
control center is advised if dose adjustment is required.

Table 3. Cyanide Antidotes.
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apnea, to milder findings, including headache, 
dizziness, fatigue, tachycardia, dyspnea, nausea, 
and vomiting.

Excessive exposure to carbon monoxide occurs 
commonly from faulty heating systems, house-
hold combustion appliances, vehicle engine ex-
haust, and smoke from house fires, resulting in 
frequent unintentional and suicidal poisoning 
deaths and accounting for more than 50,000 ED 
visits in the United States each year.59,63 Carbon 
monoxide interferes with the binding of oxygen 
to hemoglobin and inhibits mitochondrial cyto-
chrome oxidase. The diagnosis of carbon mon-
oxide exposure is supported by a characteristic 
exposure history, asphyxiant toxidrome, and el-
evated blood carboxyhemoglobin level. The car-
boxyhemoglobin level decreases after removal 
from exposure and decreases more rapidly with 
oxygen therapy, which is often applied by first 
responders, and it is thus best interpreted in the 
clinical context.63,64

Hydrogen sulfide, associated with a rotten-
egg odor, is implicated in catastrophic occupa-
tional exposures involving workers (and unpro-
tected coworkers attempting rescue) in sewers or 
other enclosed spaces.58,65 Reports on suicides 
related to home production of hydrogen sulfide 
in Japan and the United States highlight the le-
thality of this gas, with an extremely high risk 
of injury to first responders.60 Hydrogen sulfide 
has serious irritant effects on the mucous mem-
branes of the eye (with characteristic “gas eye” 
corneal ulcerations), nose, and respiratory tract 
and causes acute lung injury.

Cyanide exposure is associated with inhala-
tion of smoke from house fires; additional 
sources of exposure include industrial and labo-
ratory accidents, sodium nitroprusside therapy, 
cyanogenic chemical and plant ingestion, suicide 
attempts, and criminal or terrorist activity.57,58,66-69 
Cyanide inhibits mitochondrial cytochrome oxi-
dase and thus oxidative phosphorylation, with 
asphyxiant clinical effects, metabolic acidosis, 
and hyperlactatemia (Fig. 1). An elevated mixed 
venous oxygen saturation, which is uncharacter-
istic of many causes of cardiorespiratory com-
promise, may suggest the diagnosis.58,69 Cherry-
red skin and bitter-almond breath odor have been 
described, but these are uncommon findings and 
prone to misattribution.70 Elevated blood cyanide 
levels would support the diagnosis, but the test 

is not available on an emergency basis. In criti-
cally ill persons with smoke inhalation, lactate 
levels above 10 mmol per liter are strongly as-
sociated with cyanide toxicity.68

Management of asphyxiant poisoning begins 
with removal to fresh air, dermal decontamina-
tion for liquid exposures, advanced life support 
with 100% oxygen as the respired gas, and cor-
rection of metabolic acidosis.1,57,58,69 Gastroin-
testinal decontamination may be considered for 
cyanide and azide ingestion, particularly inges-
tion of cyanogenic compounds (e.g., acetoni-
trile and amygdalin). Oxygen, which is used for 
hypoxemia associated with simple asphyxiants, 
enhances carboxyhemoglobin elimination and, 
despite cytochrome oxidase inhibition, appears 
to be beneficial in managing the toxic effects 
of cyanide and hydrogen sulfide.1,57,58 Hyper-
baric oxygen therapy, if immediately available, 
may mitigate neurocognitive sequelae of clini-
cally significant carbon monoxide toxicity63,64,71 
(Table 1).

The toxic effects of cyanide should be suspected 
in any potentially exposed or suicidal patient pre-
senting with altered sensorium, cardiovascular 
collapse, and severe metabolic acidosis (especially 
with marked hyperlactatemia), unless another 
cause is readily apparent, and warrants antidote 
administration on an emergency basis.58,70 Three 
antidotes for the toxic effects of cyanide are cur-
rently available in the United States57,72 (Table 3). 
An older regimen (the cyanide antidote kit) con-
sists of sequential administration of nitrite (form-
ing methemoglobin, which dissociates cyanide 
from cytochrome oxidase, and inducing nitric 
oxide synthesis, which may have additional salu-
tary effects) and thiosulfate (enhancing conver-
sion of cyanide to thiocyanate, which is less 
toxic). A newer antidote, hydroxocobalamin, ex-
changes a hydroxyl group for cyanide, forming 
cyanocobalamin (vitamin B12), which is nontox-
ic. The efficacy of hydroxocobalamin has been 
established in numerous experimental studies, 
case series, and one prospective clinical trial.72,73 
Hydroxocobalamin causes reddish coloration of 
the skin and body fluids, skews several colori-
metric laboratory results (including the carboxy-
hemoglobin level), and causes false blood-leak 
alarms in some hemodialysis systems.74-76 How-
ever, its use is not complicated by potential ni-
trite-induced hypotension or excessive methemo-
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globinemia, and many authorities now consider 
hydroxocobalamin the antidote of choice,58 par-
ticularly for patients with toxic effects of cyanide 
from smoke inhalation,73 for children,77 and for 
use in the prehospital setting.73 Hydroxocobala-
min combined with thiosulfate has shown syn-
ergistic efficacy in some78 but not all79 experi-
mental models, and there is considerable clinical 
experience with its use in Europe.73,80 Thus, ini-
tial hydroxocobalamin administration, followed 
by thiosulfate infusion (through a separate or 
well-flushed catheter), may be considered in se-
vere cases.80

Robust research is under way to develop anti-
dotes that have higher potency or that may be 
given intramuscularly or orally in the case of mass 
casualties (e.g., cobinamide, a hydroxocobalamin 
congener; sulfanegan, a sulfate donor; intramus-
cular nitrite and thiosulfate; and oral glycine or 
thiosulfate).72,81,82 Hydrogen sulfide also binds to 
methemoglobin and cobalt compounds, and pa-
tients may benefit from the prompt administra-
tion of nitrite (without thiosulfate) or hydroxoco-
balamin.58 In addition, cobinamide was shown 
to have antidotal efficacy on the toxic effects of 
hydrogen sulfide in a study in animals.83

Cholinergic Agents

Cholinergic compounds include organophos-
phate and carbamate pesticides, military nerve 
agents, and several commonly used medications, 
including neostigmine and physostigmine.7,84,85 
We focus here on organophosphate pesticides 
(e.g., chlorpyrifos and diazinon) and nerve agents 
(e.g., sarin, soman, tabun, VX, and Novichok 
agents). Organophosphate pesticides, which are 
widely used in agriculture, are highly toxic and 
commonly ingested with suicidal intent in devel-
oping countries.86 Sarin was deployed as a ter-
rorist weapon in the 1995 Tokyo subway attack15 
and has been used in military conflicts against 

civilian populations in Iraq and Syria.13,14 Nerve 
agents were also used in the widely publicized 
assassination attempts in Malaysia in 2017 and 
the United Kingdom in 2018.11,12 The incident in 
the United Kingdom highlighted fourth-genera-
tion agents, also known as Novichok agents. 
These nerve agents persist on skin and environ-
mental surfaces for many days, have a latency 
period of several hours after dermal exposure, 
and are extremely toxic, requiring prolonged inten-
sive care. Guidance for first responders and health 
care workers is available at the CHEMM web-
site34 (https://chemm​.nlm​.nih​.gov/​nerveagents/​
FGA​.htm).

Organophosphates act primarily by inhibiting 
acetylcholinesterase at neural junctions. Excess 
synaptic acetylcholine results in the cholinergic 
toxidrome involving the central nervous system 
(CNS), neuromuscular junction, and autonomic 
nervous system84,85 (Fig.  2). This inhibition be-
comes irreversible after variable periods of time 
(“aging”). Severe poisonings probably also in-
volve γ-aminobutyric acid and N-methyl-d-aspar-
tate glutamate receptors, exacerbating toxic effects 
on the CNS.84,87,88 In classic cases, muscarinic, 
nicotinic, and CNS effects ensue. Muscarinic 
effects result from parasympathetic overstimula-
tion (miosis and blurred vision; excessive secre-
tions, especially salivation, lacrimation, urina-
tion, defecation, gastric cramping, and emesis 
[SLUDGE]; and bronchorrhea, bronchospasm, and 
bradycardia). Nicotinic signs result from over-
stimulation of sympathetic ganglia (diaphoresis 
and tachycardia) and neuromuscular junctions 
(muscle fasciculation, profound muscle weak-
ness, and paralysis). Finally, a spectrum of CNS 
dysfunction occurs, including confusion, coma, 
apnea, and seizures. Lethality is due primarily to 
respiratory compromise from central apnea, se-
vere airway narrowing, excessive pulmonary se-
cretions, and respiratory muscle paralysis. The 
onset and pattern of clinical findings may vary 
according to the agent and route of exposure 
(volatility correlates with inhalation hazard). 
Inhalation of nerve-agent vapor causes ocular, 
respiratory, and systemic effects in seconds to 
minutes, with an abrupt onset of seizures, paraly-
sis, and respiratory arrest in severe cases.85 Skin 
exposure to liquid agents leads to dermal absorp-
tion, with potential early localized effects such as 
diaphoresis and fasciculation, followed by sys-
temic toxic effects in the period up to 48 hours 

Figure 2 (facing page). Organophosphate Poisoning.

Panel A shows the cholinergic synapse. Both nicotinic 
and muscarinic receptors are shown for illustrative 
purposes. Panel B shows the inhibition of acetylcho-
linesterase (AChE) by organophosphate, resulting in 
overstimulation of nicotinic receptors and overexcita-
tion of the postsynaptic neuron. Panel C shows clini-
cal findings in a patient with moderate organophos-
phate poisoning. ACh denotes acetylcholine, GI 
gastrointestinal, and NE norepinephrine.
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Antidote Adult Dose Pediatric Dose Comments

Prehospital, moderate-
to-severe toxic injury

Atropine 2 or 3 autoinjectors (2 mg 
each; total, 4–6 mg)

Age <3 yr: 0.05–0.10 mg/kg (IM) 
or use autoinjector†

Age 3–7 yr: 1 autoinjector (total, 
1–2 mg)

Age 8–13 yr: 1 or 2 autoinjectors 
(2 mg each; total, 2–4 mg)

Age >13 yr: 2 or 3 autoinjectors 
(2 mg each; total, 4–6 mg)

Repeat every 2–10 min as needed to achieve  
rapid atropinization, then as needed for 
maintenance‡

Pralidoxime 2 or 3 autoinjectors (600 mg 
each; total, 1200–1800 mg)

Age 3–7 yr: 1 autoinjector
Age 8–13 yr: 2 autoinjectors
Age >13 yr: 3 autoinjectors

Repeat every hr two more times in severe cases 
(if logistically possible, use weight-based 
dosing for children <3 yr of age)†

Diazepam 2 or 3 autoinjectors, (10 mg 
each; total, 20–30 mg)

0.2–0.5 mg/kg (maximum,  
10 mg) IM§

Repeat as needed for seizure control

Hospital, moderate-to-
severe toxic injury

Atropine 1–3 mg IV 0.02–0.05 mg/kg (maximum,  
3 mg) IV

Double the dose every 5 min as needed to 
achieve rapid atropinization, then adminis-
ter infusion of 10–20% of total loading 
dose/hr‡

Pralidoxime 1–2 g IV over 30 min 25–50 mg/kg (maximum, 2 g) IV 
over 30-min period

After loading dose, administer infusion of  
0.5–1.0 g/hr in adults and 10–20 mg/kg/hr 
(maximum, 0.5–1.0 g/hr) in children

Diazepam 5–10 mg IV as needed 0.2–0.5 mg/kg (maximum,  
10 mg) IV or IM as needed

Repeat as needed for seizure control

*	�When prehospital care for mass casualties is needed (e.g., in cases of exposure to nerve agents), the recommended initial antidotal therapy 
is autoinjector doses of atropine, pralidoxime, and diazepam. When hospital care or care for individual patients is needed (e.g., in cases of 
pesticide exposure or exposure to nerve agents in patients who bypassed EMS or received initial field treatment), the recommended initial 
antidotal therapy is atropine (IV) plus pralidoxime (IV), with diazepam (IV) for nerve-agent toxic injury. On the basis of data from studies in 
animals, hypoxia should be corrected before IV atropine is administered, and a first dose of intramuscular (IM) atropine may be preferable 
in patients who have persistent hypoxia after initial resuscitation. However, this approach is controversial, and most authorities would not 
withhold atropine administration by any route in a critically ill patient.86 Dosing guidelines are adapted and summarized from the Chemical 
Hazards Emergency Medical Management (CHEMM) website34 (https://chemm​.nlm​.nih​.gov/​na_hospital_mmg​.htm#top) for treatment of 
nerve-agent toxic effects and from Eddleston86 for treatment of pesticide toxic effects. These resources provide detailed recommendations 
for antidotal and supportive care of patients who are critically ill from organophosphate poisoning. We recommend additional consultation 
with a medical toxicologist or regional poison control center (telephone number, 800-222-1222 in the United States) for specific case man-
agement.

†	�Pediatric atropine autoinjectors have been produced in 0.5-mg and 1-mg sizes (though they are currently of limited availability), and dosing 
guidelines have been established. Prehospital treatment of young children with pralidoxime is problematic, since pediatric pralidoxime auto-
injectors are not currently available. Guidelines have been suggested for using adult-size pralidoxime autoinjectors for the treatment of 
nerve-agent exposure in children 3 years of age or older (weight, >13 kg) as part of prehospital care or management of mass casualties.29 
For infants, one might consider using conventionally administered intramuscular pralidoxime. This may be facilitated by discharging one or 
several autoinjectors into an emptied 10-ml sterile saline vial. The solution of 300 mg per milliliter can then be withdrawn through a filter 
needle into syringes suitable for small-volume intramuscular injections.90 If no alternatives are available for critically ill children under the 
age of 3 years, a single adult-size pralidoxime autoinjector (600 mg) may be used .

‡	�Goals for atropinization in patients with organophosphate toxic effects are primarily drying of secretions, relief of airway obstruction and 
dyspnea, and resolution of bradycardia and hypotension as soon as feasible, generally within the first 30 minutes or so of therapy.86,89,91 The 
evidence base for this approach is most robust for the treatment of pesticide poisoning and probably applies to nerve-agent exposure as 
well. Atropine therapy is best provided as an IV regimen administered in the hospital, with bolus doses doubled every 5 minutes until atro-
pinization has been achieved. For hospital-based care, most authorities recommend continuous infusions of atropine and pralidoxime after 
initial bolus dosing, with adjustment of the atropine infusion rate to maintain atropinization while avoiding the toxic effects of atropine 
(e.g., hyperthermia, delirium, ileus, and urinary retention).86,89

§	� Benzodiazepines are the preferred anticonvulsant agents for nerve-agent toxic effects, but child-size autoinjectors are not currently available. 
For initial anticonvulsant therapy for nerve-agent–induced seizures in children, midazolam (0.15 mg per kilogram [maximum dose, 10 mg], 
IM) could be administered instead of diazepam.

Table 4. Antidotes to Cholinergic Agents.*
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after exposure. The toxic effects of pesticides 
overlap those of nerve agents but vary somewhat. 
The effects typically develop 30 to 90 minutes 
after ingestion and may persist for several days. 
Seizures are relatively uncommon, but cardiovas-
cular collapse may complicate severe cases, and 
delayed syndromes may occur, including the “in-
termediate syndrome,” with severe muscle weak-
ness leading to respiratory failure 1 to 4 days af-
ter ingestion, and a peripheral neuropathy.84,86,89 
Pesticide ingestion may be complicated by the 
toxic effects of hydrocarbon solvents, particu-
larly aspiration-related lung injury.86,89

The diagnosis depends on the history, toxi-
drome recognition, and the response to empirical 
antidotal therapy.84,86 Organophosphate toxicity 
results in depression of serum and erythrocyte 
cholinesterase levels; however, neither emergen-
cy assays for these agents nor routine laboratory 
tests for organophosphate compounds are widely 
available. Management includes decontamination 
by personnel in appropriate personal protective 
equipment, with consideration of gastrointesti-
nal decontamination in the case of pesticide in-
gestion86; meticulous supportive care, with spe-
cial attention to clearing of airway secretions, 
supplemental oxygen, and early endotracheal intu-
bation in severe cases; and rapid antidote admin-
istration (Table 4).

Atropine is administered for its antimusca-
rinic effects, particularly drying of pulmonary 
secretions, relief of bronchoconstriction, correc-
tion of hypotension and bradycardia, and poten-
tial mitigation of seizures. Organophosphate poi-
soning confers a relative tolerance to atropine; 
therefore, very large doses of atropine may be re-
quired.86 Rapid attainment of muscarinic blockade 
with atropine reduced morbidity in one random-
ized trial91 and is endorsed by many authori-
ties.84,89 Pralidoxime, an oxime acetylcholinesterase 
reactivator available in the United States, is 
widely recommended for the toxic effects of 
nerve agents.84,85,87 Though robust demonstration 
of the efficacy of pralidoxime in the treatment of 
the toxic effects of organophosphate pesticides 
is lacking, especially in resource-poor settings,92 
most authorities currently recommend its ad-
ministration for clinically significant pesticide 
toxic injury as well, with critical care support.84,89 
Autoinjectors containing both these antidotes 

are available for intramuscular administration in 
the case of mass casualties from exposure to 
nerve agents, though smaller pralidoxime auto-
injectors for use in children are not available90 
(Table  4). Critically ill patients should also re-
ceive benzodiazepines for their anticonvulsant 
effects. Intravenous administration is the pre-
ferred treatment route, especially in severely ill 
hospitalized patients. A nerve agent attack with 
mass casualties might overwhelm resources, in-
cluding antidote stocks, underscoring the need 
for alternative antidotes and alternative routes of 
administration, such as sublingual, inhaled, and 
intranasal options. Recently issued recommen-
dations based on expert consensus suggest such 
contingency anticholinergic medications, benzo-
diazepine anticonvulsant agents, and routes of 
administration.93,94 Therapeutic approaches under 
study include enzyme hydrolases such as human 
butyrylcholinesterase and paraoxenase; novel com-
binations of oximes, anticonvulsant agents, and 
anticholinergic agents; magnesium; beta-adren-
ergic agonists; neuromuscular blocking agents 
(e.g., rocuronium); and intravenous lipid emul-
sions.89,95,96

Hospi ta l ,  Communi t y,  a nd 
Nationa l Pr epa r edness

For large-scale chemical events, local communi-
ties would have to provide treatment of multiple 
casualties until federal resources could be mobi-
lized.97 Preparations for such incidents should 
include both hospital- and community-based 
chemical disaster planning and drills. An effec-
tive response requires multiple agencies (e.g., law 
enforcement, fire and hazardous-material [hazmat] 
services, EMS, hospitals, health care coalitions, 
and public health agencies) to coordinate effec-
tive information management and communica-
tions, set clear priorities, manage with limited 
resources, adapt to rapidly changing and com-
plex situations, and provide clear, accurate, and 
timely public messaging.97-99

Even though local communities must provide 
the initial response, emergency planners must 
identify the regional, military, government, and 
international resources available for preplanning 
and during a response. The World Health Orga-
nization, several U.S. federal agencies, and many 
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professional societies support specific planning 
and training for responding to chemical inci-
dents.100-102 Emergency planners must recognize 
the limits of their community’s capabilities and 
during a response must forecast needs, use de-
fined triggers to rapidly mobilize additional as-
sets, and activate preplanned strategies to coor-
dinate with local and mutual aid resources. In 
the United States, numerous federal agencies 
provide resources for the development and de-
ployment of medical measures against chemical 
threats,100,101,103 specialized teams of health care 
providers,100 and laboratory analysis104 (Table S2 
in the Supplementary Appendix). For example, 
hospitals must stock appropriate antidotes (es-
pecially for nerve agents and cyanide) in suffi-
cient supplies for a first wave of casualties.97,105,106 
To augment local stockpiles, the Centers for 
Disease Control and Prevention (CDC) provides 
CHEMPACK, a system of regionally based caches 
that can be quickly mobilized during a chemical 
incident.91,94 The National Guard has developed 
specialized support teams that can supplement 
the capabilities of local response teams during 
chemical emergencies.100 In addition, during a 
response, identification of chemical agents can 
be expedited by the CDC’s Laboratory Response 
Network for Chemical Threats, which can detect 
a number of toxic chemical agents and analyze 

samples from a large number of exposed pa-
tients.104

Summ a r y

Hazardous chemical emergencies include unin-
tentional releases of hazardous substances and 
chemical attacks. Consequent poisonings may 
result in mass casualties, challenging community 
and hospital preparedness and response efforts. 
The relevant classes of chemicals reviewed here 
include respiratory irritants, vesicants, knock-
down agents (asphyxiants, including cyanide), 
and cholinergic agents (organophosphate insec-
ticides and military nerve agents). Cyanide and 
organophosphate poisonings are also encoun-
tered in individual patients after inadvertent or 
suicidal exposures and are treated with specific 
antidotal therapy provided on an emergency ba-
sis after toxidrome recognition.
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